Robustness analysis tools for an uncertainty set obtained by prediction error identi"cation

نویسندگان

  • X. Bombois
  • D. O. Anderson
چکیده

This paper presents a robust stability and performance analysis for an uncertainty set delivered by classical prediction error identi"cation. This nonstandard uncertainty set, which is a set of parametrized transfer functions with a parameter vector in an ellipsoid, contains the true system at a certain probability level. Our robust stability result is a necessary and su$cient condition for the stabilization, by a given controller, of all systems in such uncertainty set. The main new technical contribution of this paper is our robust performance result: we show that the worst case performance achieved over all systems in such an uncertainty region is the solution of a convex optimization problem involving linear matrix inequality constraints. Note that we only consider single input}single output systems. 2001 Elsevier Science Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robustness analysis tools for an uncertainty set obtained by prediction error identification

This paper presents a robust stability and performance analysis for an uncertainty set delivered by classical prediction error identi cation. This nonstandard uncertainty set, which is a set of parametrized transfer functions with a parameter vector in an ellipsoid, contains the true system at a certain probability level. Our robust stability result is a necessary and suÆcient condition for the...

متن کامل

PROCESS CONTROL - RELEVANT AND CLOSED - LOOP IDENTIFICATION Paul

The identi cation of dynamical systems on the basis of data, measured under closed-loop experimental conditions, is a problem which is highly relevant in many (industrial) applications. When using models as a basis for model-based robust control design both nominal models and model uncertainty bounds are required. In this paper it is shown how -in particularmodel uncertainty bounds can be obtai...

متن کامل

Comparing Di erent Approaches to Model Error Modeling in Robust Identi cation

Identi cation for robust control must deliver not only a nominal model, but also a reliable estimate of the uncertainty associated with the model. This paper addresses recent approaches to robust identi cation, that explicitly aim at separating contributions from the two main uncertainty sources: unmodeled dynamics and noise a ecting the data. In particular, the following methods are considered...

متن کامل

On robust control synthesis and analysis in a Hilbert space!

The motivation for this paper stems from the need to develop a uniform framework for addressing problems in identi!cation and robust control. System identi!cation for in!nite-dimensional Hilbert spaces has been addressed earlier by the authors. System identi!cation set in an Hilbert space results in uncertain models where the description of non-parametric error is typically a ball belonging to ...

متن کامل

SECURING INTERPRETABILITY OF FUZZY MODELS FOR MODELING NONLINEAR MIMO SYSTEMS USING A HYBRID OF EVOLUTIONARY ALGORITHMS

In this study, a Multi-Objective Genetic Algorithm (MOGA) is utilized to extract interpretable and compact fuzzy rule bases for modeling nonlinear Multi-input Multi-output (MIMO) systems. In the process of non- linear system identi cation, structure selection, parameter estimation, model performance and model validation are important objectives. Furthermore, se- curing low-level and high-level ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001